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Mechanical Vibration
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Free vibration (., 695 ;999) ol alaiis b 0,3 o131 il |
| o G o151 il

ool gl of31 ilas

o g o131 olas

Conservation of energy Sl 5, s ol

Forced vibration (.=, g9, L) 6595 oyl

Damped free vibration Sl b o131 iles

Damped forced vibration Syl 5,95 ol
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Free Vibrations of Particles (Simple Harmonic Motion)

(=3B G935 09) (ol aaiti b 033 of3T ilai

N

L/

f = —kx Mass on a Horizontal spring
\

— m X = —kx

=) ;(-|- E X = ()  Differential Equation

m
— X 4+ a)nz)( =— O @, 1S the natural circular frequency

i,
ie)
X

| ” ” [k A=V
‘X—ASIH(\Et)—I— BCOS(\E'[} @, = = B=Xx,
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Mass on a Vertical spring

s L

Unstretched T=kd
T=k (5st 5 1)

Equilibrium
P ——
+Xp— 'Ir—_ = ——-} W
W=T=k(5St T £
ma=mx
+ Y
(b)
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« If aparticle is displaced through a distance x,, from its
equilibrium position and released with no velocity, the
particle will undergo simple harmonic motion,

ma=F =W —k(5st + x)=—kx
mX + kx =0

 General solution is

X = ASIn ht + B cos ht

Equilibrium

m m
s T3 Vw = Asin(ant) + Bcos (ant)
ma=mx
+Y * X is aperiodic function and @, is the natural
() circular frequency of the motion.

Q. = - « A and B are determined by the initial conditions:

m x=Asin(wnt)+ Bcos(ant) B-X

V=X = Awp cos(ant)— Bap sin(ant) A=\p/ i
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X = X Sin(@pt +¢)

—— —=| period

Dynamics 96-97-2

Xm =\/(V0/a)n)2+xg =

-

Displacement is equivalent to the x component of the sum of two vectors 61 + 62 = A+ é
which rotate with constant angular velocity @p.

amplitude

¢ = tan (Vo /Xo@n ) =| phase angle

Mechanical Vibration

= — —| natural frequency



« Velocity-time and acceleration-time curves can be represented by sine curves of
the same period as the displacement-time curve but different phase angles.

'\'
_.
¢
) QO ‘
Q Ay = ,TJ)IG)%
o,t + ¢

Vin = Xy
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X = X Sin(@pt +¢)

V=X
= X @p, COS(wpt + @)
= X@p SiN(wpt + @+ 7/2)

a=X

—Xn 2 sin(wpt + @)

= Xma)r% sin(wpt + ¢+ 7)
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@ The graphs show:

= (a) displacement as a
function of time

= (b) velocity as a
function of time

= (C) acceleration as a
function of time

# The velocity is 90°
out of phase with the
displacement and the
acceleration is 180°
out of phase with the
displacement
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SHM Example 1

D

# Initial conditions at £= 0
are

N X(0)= A
0 V(O) =0
# This means ¢ = 0

# The acceleration reaches
extremes of + «2A

# The velocity reaches
extremes of + w A

s i 3T
2
a
: : |
0 7 7 5T
2 2
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SHM Example 2

¢ Initial conditions at [\T/\ t
t=0 are . | 7
. x(0)=0 2 2
s V(0) = Vi i i

® This means ¢ = — 7/2 ’ 2 !

# The graph is shifted one-
quarter cycle to the right
compared to the graph of a
x(0)=A

N~

i ke
&)
~

)
o
T ol
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Simple Pendulum (Approximate Solution)  edbw sl

SRS
S

* Results obtained for the spring-mass system can be applied
whenever the resultant force on a particle is proportional to the
displacement and directed towards the equilibrium position.

« Consider tangential components of acceleration and force for
a simple pendulum,

y ZFt —m at ~Wsiné =mlég

Sy 0 +IgS|n H — O
for small angles, 9 N %920
o - ] 6 = O sin(ant + ¢)
14
27T |
a)n g
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Simple Pendulum (Exact Solution) o3l S5

An exact solution for O+2 g sin@ =0

leads to ”/2
4 f dg
9 Jl sin (6, /2)sin® ¢

which requires numerical solution.

2K I
T = 27
T g
Table 19.1. Correction Factor for the Period of a Simple
Pendulum

“

0,. 0° 10° | 20° 30° | 60° | 90° | 120° | 150° | 180°
K |1571|1574| 1583|1598 | 1.686 | 1.854 | 2.157 | 2.768 | <
8

9K/ | 1.000 | 1.002 | 1.008 | 1.017 | 1.073 | 1.180 | 1.373 762 | o
Dynamics 96-97-2 Mechanical Vibration 14
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* For each spring arrangement, determine
the spring constant for a single
equivalent spring.

« Apply the approximate relations for the
harmonic motion of a spring-mass
system.

()
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k, =4 KN/m k,=6 kN/m

4
\F /10 =14.14rad/s

T :—_0444 (sec.)
a)n
: ])
Vo, =X,
P =kio+k,0 =( )(14.14 )=0.566 (m/s)
P

K== =k;+k, a —x a’

~10 kN/m =10* N/m = (0.040)(14.14)° =8 (m/s?)
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k,=6 kN/m

B, 3 5 N N
~mesmmsCOren 2. 2% s e
- ’
s

5=5+8, =04
kl k2
PP kk
s P P k. +k,
kl k2
— 2400 N/m

Dynamics 96-97-2

W = L _ 200im 6.93rad/s
m 20kg
T = °r _ 0.907 (sec.)
a)n
V., =X,®,
- (0 040)(6.93)=0.277 (m/s)
a =x_a

(0.040)(6.93)° =1.92 (m/s?)

Mechanical Vibration
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Free Vibrations of Rigid Body <o pus of31 ilss

N
UV

= —mgsinél, =1l

‘ for smallangles gijn @ ~ @

=) —mgol. =16

|
e 0=0

— g’+
=) 0+’ 6=0
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Free V|brat|ons of Rigid Body <o pw 8151 olas |

« If an equation of motion takes the form

K+wix=0 or f+w20=0

* the corresponding motion may be considered as simple
harmonic motion.

« Analysis objective is to determine @,.

» Consider the oscillations of a square plate

5-W (bsin@)=(mbd )+ 1é

but f=éml(2b)2+(2b)2J=Zmb2, W =mg
d+39in0=0+399-0
5 b 5 b

3 Tn:2_7z:27[ 20

then o, = ,/—,
5b @ 39

For an equivalent simple pendulum, || = 5b/3

Dynamics 96-97-2 Mechanical Vibration 19
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D

* From the kinematics of the system, relate the
linear displacement and acceleration to the
rotation of the cylinder.

« Based on a free-body-diagram equation for the
equivalence of the external and effective forces,
write the equation of motion.

« Substitute the kinematic relations to arrive at an
equation involving only the angular displacement

and acceleration.

Dynamics 96-97-2 Mechanical Vibration 20



s e X=rf 6=2%=2r6

Ga=0+) a=ra=rd d=rd+|

DXMA=2(Mp)ss : Wr —T,(2r)=mar + I«
but T, =To +k& =W +k(2r0)

1 _ 5 1 2
Wr—(§W +2kr9)(2r)_m(r¢9) r+§mr 12
i+8%0_0
3m
8k 2 3m £ _®n _ 1 |8k
o = | X 7, =" =g |21 L=l
3am o 8k 27 27 \3m
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The disk and gear undergo torsional
vibration with the periods shown. Assume
that the moment exerted by the wire is
proportional to the twist angle.

Determine a) the wire torsional spring

ey S e,
B ST

constant, b) the centroidal moment of inertia
Wi=201b of the gear, and ¢) the maximum angular
7, =1.13s 7, =1.93s velocity of the gear if rotated through 90° and
released.

 Using the free-body-diagram equation for
the equivalence of the external and
effective moments, write the equation of
motion for the disk/gear and wire.

 With natural frequency and
spring constant known,
calculate the moment of inertia
for the gear.

 With the natural frequency and moment - Apply the relations for simple
of inertia for the disk known, calculate harmonic motion to calculate
the torsional spring constant. the maximum gear velocity.

Dynamics 96-97-2 Mechanical Vibration 22




SOLUTION:

 Using the free-body-diagram equation for the equivalence
of the external and effective moments, write the equation o
motion for the disk/gear and wire.

5 IMo =X (Mo)y : +KO=-16

W20 — 6"+59:O
|

7, =1.13s 7, =1.935
K 27T |
WOy = | — T =—=27,|—
I W K

 With the natural frequency and moment of inertia for the
disk known, calculate the torsional spring constant.

2
mr? =1( e )(3) —0.1381b-ft - 52

1 el
2 2\ 32.2 )\12

1.13:27@/&28 K = 4.27 Ib-ft/rad

Dynamics 96-97-2 Mechanical Vibration 23
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« With natural frequency and spring constant known,
calculate the moment of inertia for the gear.

1.93=27 | _ >
4.27 [ =0.4031b-ft s

W=201b  Apply the relations for simple harmonic motion to
7, =1.13s 7, =1.935 calculate the maximum gear velocity.

N

0 =6, Sinw,t @ = B0, SINw,t W = G,

6y, =90°=1.571rad

oy =0 (2—”j = (1571 rad)(z—”)
B 1.93s

wy =5.11rad/s

Dynamics 96-97-2 Mechanical Vibration 24




Principle of Conservation of Energy

T +V =const.

SSilSn (5531 Lk o

Imx® +1kx® = const.

X+ @)X’ =

T, =0 M =Wb(l-

c0s6) =WbL2 sin“ (6 /2)

(b)
Dynamics 96-97-2

2
= ZWhoy;
T =tmV’+1l @’ va=9
. 2
=im(b6, ) +i(3mb*)w;
=1($mb?)6”
T+V =T +V,

0+3Whe; =1(smb*)6,0’ +0¢p = [3g/5b

Mechanical Vibration 25



Determine the period of small
oscillations of a cylinder which rolls
without slipping inside a curved
surface.

‘ SOLUTION:

» Apply the principle of conservation of
energy between the positions of maximum
and minimum potential energy.

 Solve the energy equation for the natural
frequency of the oscillations.

Dynamics 96-97-2 Mechanical Vibration 26




r) cos O,

Position

%

SOLUTION:
» Apply the principle of conservation of energy between th
positions of maximum and minimum potential energy.

Tl +V1 = T2 +V2

T, =0 Vi =Wh =W (R~-r)(1-cosb)
gw(R—r)(er%/z)

Position 2

N~

m‘r?, + I_a)r% V, =0

=2m(R - 162 + (ZmrX jZH',%

=2m(R- r)?62

N~

Dynamics 96-97-2
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 Solve the energy equation for the natural
frequency of the oscillations.

~
%&
=]

r) cos O,

Tl +V1 = T2 +V2

Position 1 3
W

- Datum T, =0 \ EW(R = I‘)(Hr% /2)

A

‘ ' T, =3m(R-r)?42 V2=0

2
\J A O+W(R—r)07m=%m(R—r)26’r%+0

2

Mg)R—r)°™ = Im(R ~1)2 (O,

m

27 I3R-r
a)r% — g g Z'n = — = 272' 5—
Position 2 3R-r @n g
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Forced Vibrations (= 69, L) 6595 ool

N2 Forced vibrations - Occur
when a system is subjected
to a periodic force or a
periodic displacement of a
support.

@ = forced frequency

+ ) F=ma:

P="P,, sin o

MX +kx =P, Sinwst

ma=imx

Dynamics 96-97-2 Mechanical Vibration 29




' w¢ = forced frequency
Cl)ft

+, 2 F =ma:

T=k(oy+x

1 W —k(Sg + xS sinwst)=mx

ik
Equilibrium |

ma=mx

Dynamics 96-97-2 Mechanical Vibration 30



MX+ kX = By, Sinw+t X=X comp.* X part.

=[ Asinwnt + Bcos ant]+ xm sinwyt

MX + kX = Koy, SIn @+t

Substituting particular solution into governing equation,

—ma)%xm SiNwst+KkxXySiNwst =Py, Sinw;¢t

Pm _ Pm / K _ §m

Xm = = -

_k—ma)% 1—(a)f/a)n)2 1—(a)f/a)n)2

ey Xy X,
Magnification factor = P & = &

b iy

1
1 - (07/ @)

Dynamics 96-97-2 Mechanical Vibration 31




D

Magnification fact A i
actor = = =
g P, /k 5,
_ 1
1 - (0f/ @)
| . .
4= | At @ = @, forcing input is in
Xm_ o | | resonance with the system.
P, /k |
or° 2= :
Xm :
6)’)‘1 ! ] | o 3 .Z)Tf
v | ; n
0 | '
1+ |
|
_o |- |
!
_3k |

Dynamics 96-97-2
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SOLUTION:

A motor weighing 350 Ib is supported
by four springs, each having a
constant 750 Ib/in. The unbalance of
the motor is equivalent to a weight of
1 oz located 6 in. from the axis of
rotation.

Determine a) speed in rpm at which
resonance will occur, and b)
amplitude of the vibration at 1200
rpm.

« The resonant frequency is equal to the

natural frequency of the system.

 Evaluate the magnitude of the periodic

force due to the motor unbalance.

Determine the vibration amplitude
from the frequency ratio at 1200 rpm.

Dynamics 96-97-2

Mechanical Vibration 33




SOLUTION:

W =350 Ib
k = 4(750 Ib/in)

Dynamics 96-97-2

« The resonant frequency is equal to the natural frequency of

the system.

m=3 _10.871b-s2/tt
32.2

k = 4(750) = 30001b/in
= 36,000 Ib/ft

'k 136,000
a)n = — =
m 10.87

=57.5rad/s =549 rpm

Mechanical Vibration

Resonance speed = 549 rpm

34




W=3501Ib
k = 4(750 Ib/in)
@, =57.5rad/s

b
Py

P,, sin wyt

— — — —

Dynamics 96-97-2

 Evaluate the magnitude of the periodic force due to the
motor unbalance. Determine the vibration amplitude from
the frequency ratio at 1200 rpm.

@, = =1200 rpm = 125.7 rad/s

1lb 1
=(1 =0.001941 Ib-s?/ft
m=( 02)(16 oz][SZ.Zﬁ/szj >/

P, =ma, = mr *

2
- (0.001941)(£ }125.7)? =15.331b

. __ Pn/k 15333000
o P 1-(125.7/57.5f
wf/a)n (125.7/57.5)
—-0.001352 in

X =0.001352 in. (out of phase)

Mechanical Vibration 35



Damped Free Vibrations o b ol3T il

« All vibrations are damped to some degree by forces due to
dry friction, fluid friction, or internal friction.

* With viscous damping due to fluid friction,

H2F=ma: W —Kk(S5g + X)—Cx = mX
mX+cX+kx=0

« Substituting X = eM and dividing through by e’uyields the
characteristic equation,

2
MA° +cA+k =0 /Iz—ii (Lj _k
2m 2m m

e =g » Define the critical damping coefficient such that

2
el —Ezo cC=2m\ﬁ=2ma)n
2m m m

Dynamics 96-97-2 Mechanical Vibration 36




« Characteristic equation :

2
mA% +cAi+k =0 zz_CiJ(Cj _k
2m 2m m

Cc =2Mwy, = critical damping coefficient

N

« Heavy damping: ¢ > c,

_ aat At - negative roots
A IBET nonvibratory motion
» Critical damping : ¢ =c,

o (A+ Bt)e_wnt - doub_le roots _
- nonvibratory motion

 Lightdamping: c<c,

K e—(c/2m)t (Asinawgt+Bcosawgt)

2
Wy = oy 1_(_J — damped frequency

Dynamics 96-97-2
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X0

A

/_/)._

Period T4 = 27/my

/
—Xo K-
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Types of Damping

# Graphs of position X
versus time for
= (@) Light damped
oscillator

= (b) a critically ¢
damped oscillator b

= (c) Heavy damped

oscillator
# For critically damped

© 2004 Thomson/Brooks Cole

and heavy damped
there is no angular
frequency

Dynamics 96-97-2 Mechanical Vibration 39



Damped Forced Vibrations o b (5595 ulad
MX +CX+kx =P, SInw+t

X=Xcomp. * Xpart.

X

m _xm_ 1

P,k 5—m - \][1 - ({fo {UH)E]E T [Z(Fffc)(mf’{ m?ﬁ‘)]2

_ z(dcc) (ﬂ{f’f mﬁ)
L= (o @,)

where o, = m = natural circular frequency of undamped
system
c,= 2m o, = critical damping coefficient
c/c. = damping factor

Dynamics 96-97-2 Mechanical Vibration 40



Xm  _ Xm

1

__| magnification

Pn/k & :\/[1—(a)f/wn)2]2+[2(c/cc)(a)f/a)n)]2 factor

tan ¢ = 2(c/c )(wf /wn ) _ phase difference between forcing and steady
2
1— (a)f /Cf)n ) state response
5
£=0
" Cc =
/

4

- £=0.125
/ Ce
Xm i
P /k 3
" \\ £=025
X i CC
g’; 2

c%:o.so

1 ~

\ £ —1.00
\ s
0
0 1 o 2 3
@y
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